Exploiting Distortion Information for Multi-degraded Image Restoration

CVPR 2022 New Trends in Image Restoration and Enhancement workshop

Wooksu Shin, Namhyuk Ahn, Jeong-Hyeon Moon, Kyung-Ah Sohn

1. Introduction

Degraded image

- However, various types of corruption with unknown strength can be applied in real-world applications
- We integrate the complex perspectives on the multi-distortion nature and propose a new dataset

Image restoration example

Clean image

• Conventional Image restoration assumes that the input image is corrupted with a single and fixed-intensity

• To effectively restore the multi-degraded image, we propose a **distortion information-guided network(DIGNet)**

2. Holistic Multi-Distortion Dataset(HMDD)

Previous Multiple Distortion Dataset

Mixed Distortions Dataset (Yu et al. 2018)[1]

- Applying multiple distortion **sequentially** to entire image.
- restore a single distortion.

Gaussian noise, Gaussian blur, JPEG compression

Gaussian noise, Gaussian blur, JPEG compression

Mixed distortion image

Spatially-Heterogeneous Distortion Dataset (Sijin et al. 2020)[2]

- Applying **spatially-heterogeneous** distortion.
 - restore mixed distortions.

Gaussian

blur

Gaussian noise

Spatially-heterogeneous distortion image

Holistic Multi-Distortion Dataset(HMDD)

- We integrates both sequential and spatial distortions.
- Also, we make another dataset based on the weather & blur distortions as HMDD-r

Mixed distortion image

Spatially-heterogeneous distortion image

Gaussian noise, Gaussian blur, JPEG compression

Holistic Multi-distortion image

HMDD

- Based on DIV2K (Agustsson et al. 2017)
- HMDD
 - Gaussian blur, noise, JPEG
- HMDD-r
 - Snow, F-noise, Defocused blur

Distortion	Values
Gaussian blur	$\sigma_b \in \{0.5, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5\}$
Gaussian noise	$\sigma_n \in \{5, 10, 15, 20, 25, 30, 35, 40, 45\}$
JPEG quality	$q \in \{80, 60, 50, 40, 35, 30, 25, 20, 15\}$
Snow	$\mu_s \in \{0.85, 0.8, 0.75, 0.7, 0.65, 0.6, 0.55\}$
	$\sigma_s \in \{4, 4, 5, 5, 5, 5, 6, 6, 6\}$
F-noise	$\alpha_f \in \{500, 250, 150, 100, 80, 60, 40, 25, 100, 100, 100, 100, 100, 100, 100, 10$
Defocused blur	$\sigma_d \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 10\}$

HMDD Process

• First, split the clean image I_{gt} into k pieces, where $k \in [2,4,9]$

$$k = 2$$

$I_{gt} \longrightarrow \{I_{gt}^1, \dots, I_{gt}^k\}$

k = 9

HMDD Process

- Second, apply distortions
 - Randomly choose from the given distortio
 - Randomly select the intensity of the distor
- And, $I_{dis}^{i} = D^{i}(I_{gt}^{i})$; $D^{i} = D_{b}^{i} \circ D_{n}^{i} \circ D_{j}^{i}$, for i = where \circ denotes function composition.
- $I_{dis} \leftarrow \{I_{dis}^1, \dots, I_{dis}^k\}$

$$D_{b}(\sigma_{b}) = \begin{cases} \text{Gaussian blur}(\sigma_{b}) & \text{if } p_{b} \ge 0\\ \text{Identity} & \text{if } p_{b} < 0 \end{cases}$$

rtion
$$D_{n}(\sigma_{n}) = \begin{cases} \text{Gaussian noise}(\sigma_{n}) & \text{if } p_{n} \ge 0\\ \text{Identity} & \text{if } p_{n} < 0 \end{cases}$$

$$D_{j}(Q) = \begin{cases} \text{JPEG compression}(Q) & \text{if } p_{j} \ge 0\\ \text{Identity} & \text{if } p_{j} < 0 \end{cases}$$

 p_b, p_n, p_j : arbitrary value between 0 and 1.

).5).5).5).5).5

Distortion label

- Creating a spatial distortion label M for learning the Recognition network from distortion image I_d . •
- with its strength value.

• The pixel-wise distortion label M includes the multi-hot embedding for the presence of the distortion along

Spatial distortion label M

3. Distortion Information-guided network (DIGNet)

Distortion Information-Guided Network

Pixel-wise distortion labels M

Our proposed restoration framework, DIGNet, is composed of the recognition and the restoration module.

The recognition module generates the Conditional Distortion Information(CDI) from the predicted distortion.

The restoration part reconstructs the corrupted image by the distortion guidance from the recognition module

Recognition module

- The goal of the recognition module is to recognize the distortion types and intensity
- the segmentation tasks.
- Shared encoder & distortion specific representations

$F_0 = f_{enc}(X), \quad \widehat{M}^k = f_{dec}^t(F_0)$ $\widehat{M} = [\widehat{M}^t], \text{ for } t = 1, ..., T$

Since our framework assumes that different distortions can be applied for each region, we formulate this as

Recognition module - ASPP

- Our UNet based recognition module contains ASPP block at the first layer of the decoder.
- layers.

ASPP is proposed to capture the multi-scale contextual information by overlapping Atrous pooling

Restoration Module

 F_{map} • For restoration with CDI, the mapping network F_{map}

produce feature f_{cdi} as follows: $f_{cdi} = F_{map}(\widehat{M})$

SFT layer

- Spatial Feature Transform (SFT) (Wang et al. 2018)[4] delivers information by scaling and shifting features x through the modulation parameters α, β.
- $SFT(x) = \alpha \otimes x + \beta$ \bigotimes : element-wise multiplication

Restoration Module

- We now produce intermediate feature f_0 as : $f_f = F_f(f_0; \alpha, \beta)$, $f_0 = f_f + f_0$

Finally, we generate the cleaned image \hat{y} by using the image reconstruction module F_r as $\hat{y} = F_r(f_0) + x$

4. Experiments

Metrics

- PSNR, SSIM : pixel driven metrics
 -> To compare the restoration performance
- 2. Accuracy(Blur, Noise, JPEG): pixel-wise accuracy per channel

Accuracy(Pixel)

: the percentage of pixels that match the values of three channels

-> To compare the performance of recognition module

Spatial distortion label

output of recognition network

Analysis of Recognition module

# Down.	# Up.	ASPP	Accuracy (HMDD)				\rightarrow DIGNet	
			G-blur	G-noise	JPEG	Pixel	PSNR	SSIM
2	2		60.76	79.22	87.39	44.59	26.60	0.7559
4	2		71.72	84.26	94.24	60.29	26.68	0.7594
4	2	\checkmark	79.12	87.93	94.01	64.49	26.74	0.7634
4	4	\checkmark	78.77	85.38	93.98	63.01	26.71	0.7628

- 1. PSNR, SSIM : pixel driven metrics -> To compare the restoration performance
- 2. Accuracy(Blur, Noise, JPEG) : pixel-wise accuracy per channel

Accuracy(Pixel)

: the percentage of pixels that match the values of three channels

-> To compare the performance of recognition module

Quantitative Comparisons with other methods

Mathad	HM	H	
	PSNR	SSIM	PSN
OWAN [25]	23.52	0.5948	22.2
+ CDI	25.96	0.7323	27.1
MEPSNet [15]	25.77	0.7257	26.0
+ CDI	26.60	0.7606	28.4
EDSR [19]	26.25	0.7461	26.7
+ CDI	26.63	0.7622	28.5
Ours w/o CDI	26.52	0.7528	27.9
+ CDI (DIGNet)	26.74	0.7634	28.7

 IMDD-r

 R
 SSIM

 5
 0.5694

 3
 0.7885

 8
 0.7757

 3
 0.8270

 0
 0.7795

 6
 0.8401

 1
 0.8177

 0
 0.8560

Qualitative Comparisons with other methods

Distortion types: Gaussian blur, Gaussian noise, JPEG compression

GT (PSNR/SSIM)

Input (11.01/0.2456)

MEPSNet (12.25/0.3902)

OWAN

(11.49/0.3096)

MEPSNet + SDI **OWAN + SDI** (14.31/0.5924) (15.73/0.7058)

(13.36/0.5174)

EDSR + SDI (14.95/0.6501)

(32.53/0.8966)

Distortion types: Gaussian blur

Input (27.52/0.6828)

OWAN + SDI (31.31/0.8616) MEPSNet + SDI (32.23/0.8888)

Base Network (13.81/0.5430)

DIGNet (16.76/0.7309)

Input

MEPSNet + SDI

DIGNet

Base Network (31.90/0.8852)

DIGNet (32.55/0.8975)

Input

DIGNet

5. Conclusion

Conclusion

- dataset generation methods, each focusing on sequential and spatial distortions, respectively.
- the reconstruction module.
- performance improvement.

• We introduce a novel dataset HMDD, which is a more realistic dataset by fusing two previously proposed

• Our **DIGNet** outperforms other methods in multi-distortion image reconstruction performance by **predicting** spatial distortion information through recognition module and then injecting it into the feature map of

In addition, when the spatial distortion information is applied to the other models, other methods show high

